
 Error Messaging Guidance

 Error alert fundamentals
 Error alerts are a subcategory of alerts used to inform that something went wrong and attention
 is needed. Error in-app alerts provide actionable messaging in context, and they're always red.

 Error messages typically meet our customers during moments of frustration. An error itself is not
 helpful but error alerts can be helpful by bringing clarity to a frustrating situation.

 Always consider and discuss with your team how you can prevent an error before it happens.
 Consider finding ways to steer the user away from potential errors with tool tips and
 instructions. Remember, a well-written error alert for an error that shouldn't exist in the first
 place gives an overall negative user experience.

 Content
 An error alert is a notification that something has gone wrong. Notifications typically follow the
 pattern of explaining what happened , why it happened and what you can do about it .

 However, because errors are a negative experience, there is an urgency to resolve the issue
 which changes the content pattern slightly. The ideal error alert should anchor the error in
 relevant context about what went wrong and give a path to resolution as efficiently as possible.

 Prioritize what they can do about the error
 For some instances, what went wrong and why it went wrong aren’t relevant. This could be
 because it is a user error. Our technology is functioning like it should and we certainly don’t want
 to point blame at the user. The message would only need to tell the user what they should do to
 resolve the error. Example: Please enter a valid email address.

 Avoid over-using “try again” or “check back later”
 With many errors, the only thing the user can do is either immediately try again or to check back
 later when we’ve hopefully fixed the error on our end. Use the phrase, “Please check back later.”

 However, don’t suggest an action that will not be helpful to the user. Waiting and/or reloading is
 a common solution but it is not the only solution. Always discuss with your team whether
 retrying will really change anything and if there is a better action that the user can take.

 You can also turn this error into a positive opportunity by highlighting why the user would want
 to check back later (ex: Check back later for important messages and helpful tips related to your
 account.)

 Explain what happened so they don’t feel lost
 In other instances, it is necessary to give some context of what went wrong. Don’t settle for a
 generic “whoops” or “snag” message when you can provide a specific reason or the most
 plausible one. The goal is to find the right balance of general/specific: general enough to avoid
 technical jargon, but specific enough that customers generally understand what happened.

 For example, when a feature fails to load, the user has no way to know what should have
 happened. They may assume that a broken experience is functioning correctly unless we briefly
 explain what went wrong.

 Giving more context on what happened is best done as a statement that doesn’t avoid blame
 with passive voice or shi blame on an inanimate app. Instead, it begins with “We’re having
 trouble…”

 In some instances, explaining what went wrong is enough to imply what the user should do
 about it. In these cases, don’t restate the error as a command just to conform to a content
 pattern.

 Don’t: This email address is already in our system. Please enter an email address that
 isn’t in our system.

 Do: This email address is already in our system.

 Include why it happened to help them avoid repeated errors
 Typically, users may or may not care to know about APIs and the difference between retrieving
 and displaying data. This means the why the error happened is usually only relevant if it has an
 impact on what they would do to resolve the error.

 For example, with policy errors, explaining why the error happened helps the user avoid making
 the same mistake twice. This is best done as a positive statement that focuses on the policy, not
 the violation. Remember, the user only cares about what they can do, not what they can’t do. If
 and only if it’s necessary, you can link out to additional policy guidance.

 As with explaining what went wrong, if explaining the policy if enough info for the user to
 understand what to do next, don’t restate the policy as an action to conform to a content
 pattern.

 Don’t: You need at least $11 in this account to order 100 or more checks. Add at least $11
 to this account.

 Do: We accept images only in JPEG or PNG format. Please upload your image in the
 correct format.

 Empathize without using apologies
 Research shows that a blanket apology statement like “We’re sorry” doesn’t sound as
 empathetic as we may think it does. The best way to empathize with the user is to emotionally
 understand the urgency of resolving the error.

 If the error is more on our end than theirs and there isn’t a specific, immediate action that you
 can recommend to resolve the error, use "...but we're working on it" as an alternative to
 apologizing.

 However, don’t include this if you are writing for an error where it's unlikely that anyone is
 working on the error.

 Avoid technical language
 Loading is preferred to retrieving because the user can't see behind the scenes and failing to
 find something is more scary than failing to display something. Likewise, showing is preferred to
 loading.

 Typical content patterns
 There are four broad types of errors:

 1. Data/feature unavailable - when an experience or part of an experience fails to load
 because the data doesn’t exist, the system can’t retrieve the data, the feature is down for
 maintenance or the customer’s device fails to load the feature.

 2. Input-level error - when a customer enters the wrong or invalid info into a form field.
 3. Policy violation error - when a customer attempts to take an action that is prevented by a

 Capital One policy (even if it’s a benign policy like only allowing photo uploads in a
 specific format, which is a far cry from being criminal).

 4. Fatal error - when access to all of EASE is walled off and waiting on an offline customer
 action.

 A more thorough explanation of error types can be found on this confluence page .

 Aer determining your error type, use the table below to find a pattern that fits your use case.

 Error Messaging Content Pattern

 Data/Feature Unavailable
 Policy

 Violation Fatal
 Input-level

 Error

 Generic Result-focused Action-focused Feature-focused

 Something
 went wrong

 Something
 went wrong

 [User's next
 best step]

 Something went
 wrong

 We're
 having
 trouble
 showing that
 info, but
 we're
 working on
 it.

 We're having
 trouble
 [completing x
 action] right
 now, but we're
 working on it.
 [Describe the
 result].

 We're having
 trouble
 [completing x
 action] right
 now, but we're
 working on it.
 [Describe the
 user's next
 best step].

 We're having
 trouble showing
 your [feature]
 right now, but
 we're working on
 it.
 Check back later
 for [what the
 feature offers].

 [Statement
 about the
 policy that
 focuses on
 the policy,
 not the
 violation].
 [Action that
 follows
 policy,
 "Please try
 again" or
 skip this
 sentence].

 We can't
 [action
 customer was
 expecting]
 until
 [customer/we
 take an
 action]. [How
 to take that
 action].

 [User action
 to conform
 to form
 restrictions].

 OK OK [Take step]

 Design
 As a subcategory of alerts, error alerts follow gravity guidelines…

https://confluence.kdc.capitalone.com/pages/viewpage.action?spaceKey=RWG&title=Design+Framework+for+System+Error+Handling+on+EASE+Web+and+Mobile

 There are 3 types of components that can be used for an error alert:
 1. Inline text and icon
 2. Modal
 3. Global alert bar

 Inline text and icon
 This treatment is preferred to modals and the global alert bar because it keeps the error alert
 close to where the error took place. The goal is to keep the red text of the error as contextual as
 possible. If a feature loads but the data within the feature isn’t loading, the inline alert should
 take the space where the data would otherwise be.

 Because inline text is contextual, use “this” when referring to the feature that failed. Example:
 We're having trouble showing you this info right now. We're working on it. Please try again later.

 Modal
 Modals interrupt the user experience and are necessary when…

 Example use cases:
 ● when a user completes an action, but an error prevents the action to be truly executed
 ● when the entire experience fails when navigating between pages and is unavailable to

 the user
 ● when a feature is unavailable upon user interaction.

 Because modals are slightly detached from the component or feature that failed, use “that”
 when referred to what failed. Example: We're having trouble showing you that info right now.
 We're working on it. Please try again later.

 Global alert bar
 If a user returns to a page with flagged inputted information…?

 If using a flagging error, match the two error messages so the user doesn't think that they have
 two different errors.

